@article{Epitropov_Gradeva_2022, title={Wedderburn Decomposition and Structure of a Semi-Simple Dihedral Group Algebra}, url={https://stm.bookpi.org/NRAMCS-V4/article/view/7038}, DOI={10.9734/bpi/nramcs/v4/15764D}, abstractNote={<p>Let \(K\) be an arbitrary field, whose characteristic does not divide the order of the dihedral group \(D_{2 m}\) of order \(2 m\), where \(m\) is odd, and \(K D_{2 m}\) be the group algebra of \(D_{2 m}\) over the field \(K\). The structure of the semisimple dihedral group algebra \(K D_{2 m}\) is examined in this work. We find a complete system of minimal central orthogonal idempotents of the group algebra for this purpose. We define the simple components of \(K D_{2 m}\) and its Wedderburn decomposition through it. The results are as general as possible, i.e. they do not require a finite field.</p>}, journal={Novel Research Aspects in Mathematical and Computer Science Vol. 4}, author={Epitropov, Yordan and Gradeva, Ivanka}, year={2022}, month={May}, pages={99–107} }